Pulpwood Qualities of some Hardwood Species

Sven Lundgren
RISI - Wood Fibre Conference
15 February 2017
Da Nang
Vietnam

Content

- Introduction
- Cooking Yield
- Basic Wood Density
- Fibre Dimensions
- Pulp Quality Tests
- Wood Composition
- Summary
Pulpwood Qualities of some Hardwood Species
- Introduction

What is Pulpwood Qualities

- Propagation:
 - Growth rate
 - Wood density
 - Disease resistant, etc

- Kraft Pulping:
 - Viscosity
 - Brightness & reversion, etc

- Runnability:
 - Beating requirement
 - Wet web strength
 - Dewatering ability
 - Uniformity, etc

- Paper Product:
 - Opacity / Light scattering
 - Bulk / Density
 - Tensile & Tear index
 - Water absorption, etc
Pulpwood Qualities of some Hardwood Species
- Introduction

What affects pulp quality?

- Raw material
- Fibre processing
 - Chemistry
 - Mechanical
- The pulping process can at best preserve and maintain what goes in

20 - 30 %
70 – 80 %
Pulpwood Qualities of some Hardwood Species
- Introduction

General relation

- The Paper properties are related to the Physical wood fibre properties, such as:

 - Fibre length
 - Fibre coarseness

- Kraft Pulping performance are related to the Chemical composition of the wood, such as:

 - Lignin content
 - Lignin reactivity
Pulpwood Qualities of some Hardwood Species
- Introduction

Wood, Fiber & Paper Properties

- Raw Material
- Fibre Properties
- Paper Properties

- Fibre Length
- Coarseness
- Fibre Wall/Width
- Hemi-cellulose content

- Fibre Population
- Fibre Stiffness

- Formation
- Light Scattering/Opacity
- Drainage
- Bulk
- Refining Energy/Tensile
- Water Absorption
Pulpwood Qualities of some Hardwood Species
- Cooking Yield

Factors affecting Cooking Yield

- Wood Species
- Within a Wood Species
 - Type of clone
 - Growth area
 - Age of wood
- Cooking Process
Pulpwood Qualities of some Hardwood Species - Cooking Yield

Laboratory Cooking of E Globulus and E Nitens - Forico’s Tasmanian Plantations

Laboratory Cooking at Foricos Fibre Technology facility:
- Kappa 18 with fixed H-factor average of totally 135 samples up to late 2016

<table>
<thead>
<tr>
<th>Wood Specie</th>
<th>Samples</th>
<th>Wood Density kg BD/m3s wet</th>
<th>Total Yield %</th>
<th>AA Charge % NaOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Globulus</td>
<td>35</td>
<td>546</td>
<td>56.4</td>
<td>16.0</td>
</tr>
<tr>
<td>E Nitens</td>
<td>100</td>
<td>476</td>
<td>54.0</td>
<td>16.9</td>
</tr>
</tbody>
</table>
Pulpwood Qualities of some Hardwood Species
- Cooking Yield

Laboratory Testing of Wood Samples
Laboratory Cooking at Forico’s Fibre Technology facility to Kappa 18 with fixed H-factor

<table>
<thead>
<tr>
<th>Wood Specie</th>
<th>Origin</th>
<th>Samples</th>
<th>Tree Age</th>
<th>Wood Density kg BD/m3s</th>
<th>Total Yield %</th>
<th>AA Charge % NaOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Camaldulensis</td>
<td>Thailand</td>
<td>1</td>
<td>4</td>
<td>507</td>
<td>47.9</td>
<td>18.7</td>
</tr>
<tr>
<td>E Nitens</td>
<td>Chile</td>
<td>1</td>
<td>12</td>
<td>460</td>
<td>56.4</td>
<td>15.9</td>
</tr>
<tr>
<td>A Maernsii</td>
<td>Brazil</td>
<td>1</td>
<td>6</td>
<td>575</td>
<td>55.7</td>
<td>17.7</td>
</tr>
<tr>
<td>A Mangium Hybrid</td>
<td>Vietnam</td>
<td>1</td>
<td>4</td>
<td>489</td>
<td>53.3</td>
<td>18.3</td>
</tr>
</tbody>
</table>
Pulpwood Qualities of some Hardwood Species
- Cooking Yield & Basic Wood Density

Chilean E Globulus - Cooked to Kappa 15-16

Source: M. Peredo
Pulpwood Qualities of some Hardwood Species
- Cooking Yield & Basic Wood Density

Yield and Basic Density due to Age

Source: Forico Pty Limited
Pulpwood Qualities of some Hardwood Species
- Basic Wood Density

![Fibre Coarseness & Population vs Basic Density](image)

Source: Celso-foelkel
Pulpwood Qualities of some Hardwood Species
- Cooking Yield & Basic Wood Density

Tree Age
- Increasing Tree Age gives:
 - increasing Basic Wood Density
 - higher Cooking Yield
 - higher Fibre Coarseness

Basic Wood Density
- Increasing Basic Wood Density gives:
 - higher Fibre Coarseness
 - reduced Fibre Population
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

Fibre Dimensions
Pulpwood Qualities of some Hardwood Species - Fibre Dimensions

Fibre Dimensions

- There are variations of fibre dimensions within a Wood Species
- Those variations are due to:
 - Individual Trees
 - Location in the tree
 - Age of the tree
 - Growth location
 - Growth conditions
 - Climate
 - Soil

The sampling and testing curse

- Testing a Tree instead of Testing a Forest
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

Fibre Measurement – Kajaani FS 200/300
- Fibre Length & Fibre Coarseness

- Average Fibre Length:
 - Arithmetic
 - Length weighted distribution
 - Weight weighted distribution

- Fibre Coarseness:
 - weight of Fibre per meter in µg/m (mg/100m)

- Fibre Population:
 - Length weighted Fibre Length and Coarseness

- Fibres / g:
 - Arithmetic calculation

- Fines definition:
 - Fibres with < 0.2 mm length

- Fines amount:
 - usually about 10 % of number of Fibres and about 2 % of total Fibre Length
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

Fibre Wall Thickness – Fibre Coarseness

Low Coarseness
Thin-walled

High Coarseness
Thick-walled

Collapse susceptibility

Collapse resistance

More bonding
Higher Tensile Index
Less Bulk
Surface softness
Higher Light Scattering

Less bonding
Lower Tensile Index
More Bulk
Rougher
Lower Light Scattering
Pulpwood Qualities of some Hardwood Species - Fibre Dimensions

Comparison – Bleached Hardwood Pulp

<table>
<thead>
<tr>
<th>Wood Specie</th>
<th>Fibre Length mm</th>
<th>Fibre Coarseness µg / m</th>
<th>Fibre Population million / g pulp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Birch</td>
<td>1.11</td>
<td>124</td>
<td>7.3</td>
</tr>
<tr>
<td>US South HW</td>
<td>0.94</td>
<td>119</td>
<td>8.9</td>
</tr>
<tr>
<td>Scandinavian Birch</td>
<td>0.91</td>
<td>108</td>
<td>10.2</td>
</tr>
<tr>
<td>Canadian Aspen</td>
<td>0.75</td>
<td>103</td>
<td>12.9</td>
</tr>
<tr>
<td>Brazilian Eucalyptus</td>
<td>0.72</td>
<td>74.5</td>
<td>18.6</td>
</tr>
<tr>
<td>Acacia</td>
<td>0.66</td>
<td>70.8</td>
<td>21.4</td>
</tr>
</tbody>
</table>

Source: Cincinnati University
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

- Comparison HW pulps

Fibre Population vs Fibre Coarseness

- Bulk & Stiffness improves

- Opacity & Formation improves

![Graph showing fibre population vs fibre coarseness for various species]

- Acacia
- Braz Euc
- Aspen
- Scan Birch
- US South HW
- Can Birch

Opacity & Formation improves as fibre coarseness increases.

Bulk & Stiffness improves as fibre population decreases.
Pulpwood Qualities of some Hardwood Species - Fibre Dimensions

Comparison - Eucalyptus

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>camal</th>
<th>dulenis</th>
<th>rudis</th>
<th>resini</th>
<th>fer</th>
<th>propi</th>
<th>nqua</th>
<th>siderox</th>
<th>ylan</th>
<th>botryo</th>
<th>dis</th>
<th>vimin</th>
<th>alis</th>
<th>macul</th>
<th>ata</th>
<th>saliga</th>
<th>grandis</th>
<th>ovata</th>
<th>globulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>µm</td>
<td>569</td>
<td>626</td>
<td>629</td>
<td>614</td>
<td>568</td>
<td>719</td>
<td>598</td>
<td>748</td>
<td>708</td>
<td>759</td>
<td>608</td>
<td>727</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarseness</td>
<td>µg/m</td>
<td>68</td>
<td>60</td>
<td>57</td>
<td>76</td>
<td>59</td>
<td>63</td>
<td>46</td>
<td>84</td>
<td>66</td>
<td>61</td>
<td>59</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre Population</td>
<td>Million/g</td>
<td>25.8</td>
<td>26.6</td>
<td>27.9</td>
<td>21.4</td>
<td>29.8</td>
<td>22.1</td>
<td>36.4</td>
<td>15.9</td>
<td>21.4</td>
<td>21.6</td>
<td>27.9</td>
<td>20.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>µm</td>
<td>19.7</td>
<td>19.2</td>
<td>19.3</td>
<td>18.8</td>
<td>16.8</td>
<td>19.6</td>
<td>18.8</td>
<td>18.0</td>
<td>19.6</td>
<td>18.9</td>
<td>19.4</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: D. Nevia
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

Eucalyptus

Bulk & Stiffness improves

Opacity & Formation improves

Fibre Population vs Coarseness

Fibre Population million / g vs Fibre Coarseness µg / m

Sven Lundgren
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

E. Nitens Samples from Forico’s Tasmanian Plantations

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre Length mm</td>
<td>0.67</td>
<td>0.66</td>
<td>0.74</td>
<td>0.71</td>
<td>0.83</td>
<td>0.84</td>
<td>0.72</td>
<td>0.84</td>
<td>0.85</td>
<td>0.80</td>
<td>0.81</td>
<td>0.71</td>
</tr>
<tr>
<td>Fibre Coarseness µm</td>
<td>62</td>
<td>64</td>
<td>68</td>
<td>68</td>
<td>55</td>
<td>54</td>
<td>60</td>
<td>64</td>
<td>57</td>
<td>57</td>
<td>71</td>
<td>65</td>
</tr>
<tr>
<td>Fibre Population million/g</td>
<td>24.1</td>
<td>23.7</td>
<td>19.9</td>
<td>20.7</td>
<td>21.9</td>
<td>22.0</td>
<td>23.1</td>
<td>18.6</td>
<td>20.6</td>
<td>21.9</td>
<td>17.4</td>
<td>23.5</td>
</tr>
</tbody>
</table>

Source: Forico Pty Limited
Pulpwood Qualities of some Hardwood Species - Fibre Dimensions

E Globulus samples - Australia

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre Lengths mm</td>
<td>0.80</td>
<td>0.9</td>
<td>0.85</td>
<td>0.87</td>
<td>0.88</td>
<td>0.88</td>
<td>0.91</td>
</tr>
<tr>
<td>Fibre Coarseness μg/m</td>
<td>74</td>
<td>80</td>
<td>76</td>
<td>76</td>
<td>70</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Fibre Population million/g</td>
<td>16.9</td>
<td>13.9</td>
<td>15.5</td>
<td>15.1</td>
<td>16.2</td>
<td>16.2</td>
<td>15.3</td>
</tr>
</tbody>
</table>

Source: Forico Pty Limited
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

Fibre Coarseness & Population
- E Nitens & E Globulus - Forico Plantation

<table>
<thead>
<tr>
<th>Wood Specie:</th>
<th>E Globulus</th>
<th>E Nitens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre Coarseness:</td>
<td>74.4</td>
<td>62.1 µg / m</td>
</tr>
<tr>
<td>Fibres:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Population:</td>
<td>15.6</td>
<td>20.9 million / g</td>
</tr>
</tbody>
</table>

E Nitens: + 33 % Fibre Population than E Globulus

better Light Scattering / Opacity
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

Fibre Coarseness & Fibre Length – Variation or Spread

<table>
<thead>
<tr>
<th>Fibre Coarseness</th>
<th>Samples</th>
<th>Avg</th>
<th>Max Value</th>
<th>%</th>
<th>Min Value</th>
<th>%</th>
<th>+/- 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Nitens</td>
<td>12</td>
<td>62.1</td>
<td>71</td>
<td>+ 14.3%</td>
<td>54</td>
<td>- 13.0%</td>
<td>75%</td>
</tr>
<tr>
<td>E Globulus</td>
<td>7</td>
<td>74.4</td>
<td>80</td>
<td>+ 7.5%</td>
<td>70</td>
<td>- 5.6%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fibre Length</th>
<th>Samples</th>
<th>Avg</th>
<th>Max Value</th>
<th>%</th>
<th>Min Value</th>
<th>%</th>
<th>+/- 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Nitens</td>
<td>12</td>
<td>0.77</td>
<td>0.84</td>
<td>+ 9.1%</td>
<td>0.55</td>
<td>- 14.3%</td>
<td>83%</td>
</tr>
<tr>
<td>E Globulus</td>
<td>7</td>
<td>0.87</td>
<td>0.91</td>
<td>+ 4.6%</td>
<td>0.80</td>
<td>- 8.0%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Pulpwood Qualities of some Hardwood Species - Fibre Dimensions

Fibre Measurement – Kajaani FS 200/300

<table>
<thead>
<tr>
<th>Wood Species</th>
<th>Fines %</th>
<th>Fibre Length mm</th>
<th>Fibre Coarseness µg/m</th>
<th>Fibre Population million/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Numeric</td>
<td>Length Weighted</td>
<td>Arithmetic Weighted</td>
<td>Weighted</td>
</tr>
<tr>
<td>E Nitens Chile</td>
<td>8.31</td>
<td>1.23</td>
<td>0.70</td>
<td>0.87</td>
</tr>
<tr>
<td>E Camaldulensis</td>
<td>10.33</td>
<td>1.69</td>
<td>0.61</td>
<td>0.76</td>
</tr>
<tr>
<td>A Mearnsii</td>
<td>11.54</td>
<td>2.01</td>
<td>0.63</td>
<td>0.80</td>
</tr>
<tr>
<td>A Mangium Hybrid</td>
<td>8.75</td>
<td>1.55</td>
<td>0.66</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

Comparison - Tested Wood Species

 opacity & formation improves

Bulk & Stiffness improves
Pulpwood Qualities of some Hardwood Species
Fibre Dimensions

Comparison – Acacias

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre Length</td>
<td>mm</td>
<td>0.67</td>
<td>0.65</td>
<td>0.77</td>
<td>0.83</td>
<td>0.66</td>
<td>0.65</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td>Coarseness</td>
<td>µg/m</td>
<td>66</td>
<td>46</td>
<td>62</td>
<td>61</td>
<td>64</td>
<td>66</td>
<td>60</td>
<td>71.5</td>
</tr>
<tr>
<td>Fibre Population</td>
<td>Million/g</td>
<td>22.6</td>
<td>33.4</td>
<td>21.0</td>
<td>19.9</td>
<td>23.7</td>
<td>23.3</td>
<td>25.3</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Musi Pulp

Source: * K Watanabe, Nippon Paper Ind.
** U-B Mohlin, STFI, *** Valmet, **** A Santos
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

- Comparison Acacias
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions
- Light Scattering Coef. vs Fibre Coarseness
 Un-refined Pulp

\[y = -0.1932x + 47.344 \]
\[R^2 = 0.7225 \]

Acacia Magium Hybrid
4 years
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

- Bulk vs Fibre Coarseness – Un-refined Pulp

\[y = 0.0224x + 0.1549 \]
\[R^2 = 0.8608 \]
Pulpwood Qualities of some Hardwood Species
- Fibre Dimensions

- Light Scattering at Tensile Index 70 Nm/g vs Fibre Coarseness
- Bulk at Tensile Index 70 Nm/g vs Fibre Coarseness / Fibre width for 5 Eucalyptus species

Source: U Jansson, StoraEnso
Pulpwood Qualities of some Hardwood Species
- Pulp Quality Tests

Pulp Quality Tests
- Un-bleached Pulp
- Standardised Laboratory Procedure

The Paper Properties testing data from Forico’s Fibre Technology facility are used to create regression lines
Pulpwood Qualities of some Hardwood Species - Pulp Quality Tests

Tested Wood Species at Forico Fibre Technology Laboratory

<table>
<thead>
<tr>
<th>Wood Species</th>
<th>Samples</th>
<th>Origin</th>
<th>Tree Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Nitens</td>
<td>~10</td>
<td>Australia / Tasmania</td>
<td>~15</td>
</tr>
<tr>
<td>E Globulus</td>
<td>~5</td>
<td>Australia</td>
<td>~13 -15</td>
</tr>
<tr>
<td>E Nitens</td>
<td>1</td>
<td>Chile</td>
<td>12</td>
</tr>
<tr>
<td>E Camaldulensis</td>
<td>1</td>
<td>Thailand</td>
<td>4</td>
</tr>
<tr>
<td>A Mearnsii</td>
<td>1</td>
<td>Brazil</td>
<td>6</td>
</tr>
<tr>
<td>A Mangium Hybrid</td>
<td>1</td>
<td>Vietnam</td>
<td>4</td>
</tr>
</tbody>
</table>
Pulpwood Qualities of some Hardwood Species
- Pulp Quality Tests

Paper Properties Comparisons - Un-bleached pulp

<table>
<thead>
<tr>
<th>Comparison</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Species</td>
<td>E Globulus vs E Nitens</td>
<td>E Nitens vs E Nitens Chile</td>
<td>E Globulus vs A Mangium Hybrid A Mearnsii E Camaldulensis</td>
</tr>
</tbody>
</table>

Sven Lundgren
Pulpwood Qualities of some Hardwood Species
- Pulp Quality Tests

Paper Properties - Hardwood Pulps

- The Tear-Tensile Index relation is not an important parameter for Hardwood pulps as it’s normal printing & writing applications are not too demanding on strength. However, always used.

- Light Scattering / Opacity and Bulk are more important parameters for Hardwood pulps in printing & writing paper applications

- Tensile Index development on Beating indicate refining behaviour

- Comparison usually made at a Tensile Index ~ 70 Nm/g. That is the level usually refined to at the Paper Machine
Pulpwood Qualities of some Hardwood Species

Tensile Index vs Beating

- E Nitens
- E Globulus

Tensile Index Nm/g

Beating revs/g
Pulpwood Qualities of some Hardwood Species

Tear Index vs Tensile Index

E Nitens E Globulus

- Tear Index mNm^2/g
- Tensile Index Nm/g

Graph shows the relationship between Tear Index and Tensile Index for E Nitens and E Globulus, with peaks at different points for each species.
Pulpwood Qualities of some Hardwood Species

Bulk vs Tensile Index

- E Nitens
- E Globulus
Pulpwood Qualities of some Hardwood Species

Light Scattering Coef. vs Tensile Index

- Red line: E Nitens
- Blue line: E Globulus

<table>
<thead>
<tr>
<th>Light Scattering Coef. m²/kg</th>
<th>Tensile Index Nm/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>35</td>
<td>80</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>120</td>
</tr>
<tr>
<td>20</td>
<td>140</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Pulpwood Qualities of some Hardwood Species

Light Scattering Coef. vs Bulk

- **E Nitens**
- **E Globulus**
Pulpwood Qualities of some Hardwood Species
Pulpwood Qualities of some Hardwood Species

Light Scattering Coef. vs Tensile Index

- E Nitens
- E Nitens Chile

![Graph showing Light Scattering Coef. vs Tensile Index for E Nitens and E Nitens Chile](image)
Pulpwood Qualities of some Hardwood Species
Pulpwood Qualities of some Hardwood Species

Tensile Index vs Beating

- E Globulus
- E Camaldulensis
- A Mearnsii
- A Mangium Hybrid

Tensile Index Nm/g vs Beatning rev/g
Pulpwood Qualities of some Hardwood Species

![Graph showing Tear Index vs Tensile Index](graph.png)
Pulpwood Qualities of some Hardwood Species

Bulk vs Tensile Index

- E Globulus
- E Camaldulensis
- A Mearnsii
- A Mangium Hybrid

Bulk cm³/g vs Tensile Index Nm/g
Pulpwood Qualities of some Hardwood Species

![Light Scattering Coef. vs Tensile Index Graph]

- **E Globulus**
- **E Camaldulensis**
- **A Mearnsii**
- **A Mangium Hybrid**

Sven Lundgren
Pulpwood Qualities of some Hardwood Species
- Pulp Quality Tests

Comments

- E Nitens develop Tensile Index fast – easy to refine
- E Globulus have better Bulk at given Tensile Index
- E Nitens have better Light Scattering Coefficient / Opacity at given Tensile Index and Bulk
- E Nitens and E Nitens Chile have the same Paper Properties
- A Mearnsii have lower Bulk than expected from it’s Fibre Coarseness
- A Mangium Hybrid and E Camaldulensis have good Light Scattering Coef. / Opacity probably due to very young wood (both 4 years) with low Fibre Coarseness
- Test your wood raw material and wood species
Pulpwood Qualities of some Hardwood Species
- Wood Composition

▶ **Wood Composition**
 - Cellulose
 - Hemi-cellulose
 - Lignin
 - Extractives

▶ The difference in Cooking Time, Cooking Temperature and AA charges can **not** be explained by the difference in Lignin content between different Hardwood species
Pulpwood Qualities of some Hardwood Species
- Wood Composition

Lignin - Structural Units

- All Lignin consist of mainly 3 Structural Units: H, G and S
- Eucalyptus Globulus:
 - Range S/G ratio: 4.4 – 7.1
 - Average S/G ratio: 5.5
- For Hardwood species the amount of the Structural Units in the Lignin vary considerably between the wood species
- For Softwood species the amount of the Structural Units in the Lignin vary little between the wood species

Source. J Colodette
Pulpwood Qualities of some Hardwood Species
- Wood Composition

Lignin Content & S/G Ratio - Eucalyptus

Source: J. Colodette
Pulpwood Qualities of some Hardwood Species
- Wood Composition

S/G Ratio, Lignin content & AA consumption
– some Hardwoods

► **Acacia** - Aucruliformis
 - Mearnsii
 - Mangium x 7
 - Hybrids x 6

► **Eucalyptus** - Camaldulensis x 2
 - Dunnii
 - Globulus x 2
 - Grandis x 3
 - Nitens x 2
 - Urophylla
 - Hybrid

Definitions

► Kappa number: an analytical measurement of remaining ‘Lignin’ content in pulps
► Klason Lignin: a measurement of Lignin content in wood that do not include Acid-soluble Lignin
► Total Lignin: Klason Lignin + Acid Soluble Lignin

Sven Lundgren
Pulpwood Qualities of some Hardwood Species
- Wood Composition

Source: Y. Matsumoto

Increasing S/G ratio

Source: Sven Lundgren
Pulpwood Qualities of some Hardwood Species - Wood Composition

Syringyl ratio vs acid soluble lignin (content)

Source: Y. Matsumoto
Pulpwood Qualities of some Hardwood Species - Wood Composition

Syringyl ratio vs Lignin content

- S/(S+G) = 0.67, S/G = 2
- S/(S+G) = 0.8, S/G = 4

Source: Y. Matsumoto

Sven Lundgren
Pulpwood Qualities of some Hardwood Species - Wood Composition

Source: Y. Matsumoto

S/V ratio vs pulpability (acacias and eucalyptus)

Consumption of active alkali at Kappa 19

S/G ratio

Cooperative research with Oji Paper Company
Pulpwood Qualities of some Hardwood Species
- Wood Composition

Lignin - Content and Reactivity

- S/G ratio correlates directly with Lignin Content and Lignin Reactivity for Eucalyptus and Acacias
 - Lower S/G ratio:
 - higher Lignin Content
 - lower Reactivity
 - Higher S/G ratio:
 - lower Lignin Content
 - higher Reactivity

- A Mangium consumes ~ 30% more Active Alkali than E Globulus / E Nitens during Kraft Cooking to reach Kappa 19

Source: Y. Matsumoto
Pulpwood Qualities of some Hardwood Species
- Wood Composition

S/G Ratio

- Lignin content, composition S, G, H and S/G ratio for the following Hardwood species:
 - E Globulus
 - E Camaldulensis
 - E Nitens
 - E Maidenii
 - E Grandis
 - E Dunnii
 - E Urograndis
 - E Pellita
 - A Mangium
 - A Mearnsii
 - A Auricuriformis
 - A Hybrid

- Limited references on some of the wood species

- Hardwood species ranked in falling average S/G ratio
Pulpwood Qualities of some Hardwood Species - Wood Composition

<table>
<thead>
<tr>
<th>Wood Specie</th>
<th>Lignin %</th>
<th>S %</th>
<th>G %</th>
<th>H %</th>
<th>S/G</th>
<th>S/G Avg.</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Globulus</td>
<td>18.7 K</td>
<td>82.6</td>
<td>17.4</td>
<td>4.8</td>
<td>4.8</td>
<td></td>
<td>Rencoret</td>
</tr>
<tr>
<td></td>
<td>20.5</td>
<td>84</td>
<td>14</td>
<td>2</td>
<td>6.0</td>
<td></td>
<td>Evtuguin</td>
</tr>
<tr>
<td></td>
<td>25.1</td>
<td>81.0</td>
<td>18.0</td>
<td>1.0</td>
<td>4.5</td>
<td></td>
<td>Colodette</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.2</td>
<td></td>
<td>Mokochinski</td>
</tr>
<tr>
<td>E Maidenii</td>
<td>22.6 K</td>
<td>82.1</td>
<td>17.9</td>
<td>5.3</td>
<td>5.1</td>
<td></td>
<td>Gellerstedt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.6</td>
<td></td>
<td>Rencoret</td>
</tr>
<tr>
<td>E Nitens</td>
<td>22.5 K</td>
<td>82.0</td>
<td>18.0</td>
<td>3.5</td>
<td>4.1</td>
<td></td>
<td>Rencoret</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Dunnii</td>
<td>21.6 K</td>
<td>80.0</td>
<td>20.0</td>
<td>3.8</td>
<td>3.9</td>
<td></td>
<td>Matsumoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.0</td>
<td></td>
<td>Rencoret</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E Grandis</td>
<td>21.1 K</td>
<td>78.4</td>
<td>21.6</td>
<td>3.6</td>
<td>3.6</td>
<td></td>
<td>Rencoret</td>
</tr>
<tr>
<td></td>
<td>26.7</td>
<td>68</td>
<td>27</td>
<td>5</td>
<td>2.5</td>
<td></td>
<td>Evtuguin</td>
</tr>
<tr>
<td></td>
<td>75.0</td>
<td>21.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td></td>
<td>Mokochinski</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
<td></td>
<td>Gutierrez</td>
</tr>
</tbody>
</table>
Pulpwood Qualities of some Hardwood Species - Wood Composition

<table>
<thead>
<tr>
<th>Wood Specie</th>
<th>Lignin %</th>
<th>S %</th>
<th>G %</th>
<th>H %</th>
<th>S/G</th>
<th>S/G Avg.</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Urograndis</td>
<td>26.7</td>
<td>65</td>
<td>30</td>
<td>5</td>
<td>2.2</td>
<td></td>
<td>Evtuguin</td>
</tr>
<tr>
<td></td>
<td>28.7</td>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td></td>
<td>Colodette</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>2.5</td>
<td>Matsumoto</td>
<td></td>
<td>Matsumoto</td>
</tr>
<tr>
<td>A Mearnsii</td>
<td>22</td>
<td>67</td>
<td>33</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>Matsumoto</td>
</tr>
<tr>
<td>E Camaldulensis</td>
<td>29.8</td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td></td>
<td>Colodette</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>1.9</td>
<td>Matsumoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
<td>1.9</td>
<td>Mokochinski</td>
</tr>
<tr>
<td>E Pellita</td>
<td>64</td>
<td>34</td>
<td>2</td>
<td></td>
<td>1.9</td>
<td>1.9</td>
<td>Matsumoto</td>
</tr>
<tr>
<td>A Hybrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
<td>1.4</td>
<td>Matsumoto</td>
</tr>
<tr>
<td>A Auricuriformis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>1.2</td>
<td>Matsumoto</td>
</tr>
<tr>
<td>A Mangium</td>
<td>28</td>
<td>49</td>
<td>48</td>
<td>3</td>
<td>1.0</td>
<td></td>
<td>P.C. Pinto</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>47</td>
<td>50</td>
<td>3</td>
<td>0.9</td>
<td></td>
<td>Evtuguin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.95</td>
<td>1.0</td>
<td>Matsumoto</td>
</tr>
</tbody>
</table>
Pulpwood Qualities of some Hardwood Species
- Wood Composition

Based on the S/G ratio the Hardwood species can be grouped as below

<table>
<thead>
<tr>
<th>S/G ratio</th>
<th>< 2 Low S/G</th>
<th>2 – 4 Medium S/G</th>
<th>≥ 4 High S/G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A Auricuriformis</td>
<td>E Grandis</td>
<td>E Globulus</td>
</tr>
<tr>
<td></td>
<td>A Mangium</td>
<td>E Dunnii</td>
<td>E Nitens</td>
</tr>
<tr>
<td></td>
<td>E Pelita</td>
<td>E Urograndis</td>
<td>E Maidenii</td>
</tr>
<tr>
<td></td>
<td>A Hybrid</td>
<td>A Mearnsii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E Camaldulensis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pulpwood Qualities of some Hardwood Species - Wood Composition

Source: R. B. Santos

Delignification rate (1/min x 100) and S/G ratio

Delign. Rate
S/G ratio
FPulpwood Qualities of some Hardwood Species
- Wood Composition

Delignification rate (1/min×100) vs S/G ratio

\[y = 0.7407x + 0.6254 \]

\[R^2 = 0.9392 \]

Source: R. B. Santos
Pulpwood Qualities of some Hardwood Species

- **Wood Composition**

S/G ratio importance

- The S/G ratio defines the Lignin reactivity for Hardwood species which explains the difference in pulping conditions between the wood species

High S/G ratio

- Easy to de-lignify (Easy to Cook):
 - Low Cooking Temperature
 - Short Retention Time
 - Low AA / EA charge

- Good Bleachability

- Very suitable for Dissolving pulping
Pulpwood Qualities of some Hardwood Species
- Wood Composition

Cooking of mixed Wood Species

- The S/G ratio should be not too far apart for the respective wood species

- S/G ratio correlates to the different cooking time and temperature to reach the desired Kappa number for the respective wood species

- Any given reaction rate doubles for every 8 - 10 °C temperature increase

- Similar S/G ratio is to avoid Over or Under - Cooking of the respectively wood species
Pulpwood Qualities of some Hardwood Species
- Summary

Summary

- Important Paper properties for Hardwoods
 - Light Scattering / Opacity and Bulk are contradictory

- Fibre Coarseness is a very informative parameter

- The Lignin chemical structure expressed as S/G ratio for Hardwoods defines the Lignin reactivity which influences:
 - Alkali consumption during cooking
 - Cooking time & temperature
 - Chemical consumption during bleaching

- Hardwoods with High S/G ratio are easy to de-lignify

- Test your wood raw material and get to know your wood species and how they interrelate
Pulpwood Qualities of some Hardwood Species

Thank you!

- Sven Lundgren
- Process & Project

- sven.a.lundgren@outlook.com
- +46 70 661 6978