COMMITTED TO PERFORMANCE

DEMUTH

Woodhandling
Improving Woodchip Quality

Erik Demuth
Director

International Woodfiber Resource and Trade Conference
10th International Woodfiber Resources & Trade Conference
Durban, South Africa, September, 2018

DEMUTH Woodhandling
Main Products:

- Chipping Lines
- Disc Chippers
- Oscillating Screens
- Debarkers
- Air Belt Conveyors
- Chip Silos
- Bark Chippers
1. FEEDING
 - Automatic Constant Feeding
2. DEBARKING
 - Reduce Wood Losses
 - Reduce Bark on Chips
3. CHIPPING
 - High amount of accepts chips
1. FEEDING PROCESS

Automatic Constant Feeding
1) **Feeding Tables:** DEMUTH MASTER FEED

Elements to reach PRODUCTION with CHIP QUALITY:

- Distribution of the logs in the table,
- Constant and regular flow in the chipping line,
- Logs to be cutting in the correct point of the chipper.
- **AUTOMATIC WOOD FEEDING CONTROL.**
AUTOMATION – FEEDING CONTROL

NO EMPTY SPACES
GREAT LOGS DISTRIBUTION
Constant and regular log flow to the chipper
UNIFORM LOGS DISTRIBUTION
ROLLER DEBARKER
Better Performance
2) **DEMUTH Roller Debarker:**

Elements to reach **LOW WOOD LOSSES** and good **BARK REMOVAL**

- Controlled log speed in the machine,
- High performance abraders,
- Smooth debarking.
High efficiency debarking solution
Machine construction concept generates a Smooth Debarking process
Abraders distribution and rolls design to reach better debarking
ABRADERS PROFILE

CONIC PROFILE

PARALLEL PROFILE
Smooth debarking to avoid breakage of the logs even operating with

Thin logs - Small logs – Long logs
Cases with less than 0,5% of Residual bark on chips
Cases with less than 0.7% Wood Losses
3. **DISC CHIPPERS**

High Quality Chips
3) DEMUTH Disc Chippers:

Elements to reach a good CHIP QUALITY

- Monoblock frame,
- Heavy duty rotors,
- High precision machine,
- Cutting Dynamics,
- Logs stability during the cutting process.
MONOBLOCK FRAME
MONOBLOCK FRAME

WEAR PLATES

PRECISION MILLING

BETTER LOAD DISTRIBUTION
HEAVY DUTY – ROTOR DISC

06 YEARS GUARANTEE
Project applies concept and studies with detailed cutting dynamics

\[\lambda = \text{Complementary angle} \]
\[\beta = \text{Knife angle} \]
\[\xi = \text{Pull-in angle} \]
\[\varepsilon = \text{Feed angle} \]
\[c = \text{Knife clearance} \]
\[u = \text{Knife distance from disc} \]
1 – Low speed zone
2 – Medium speed zone
3 – High speed zone

Generation of oversized and overthickness
Generation of higher amount of accept chips
Generation of fines

KNIFE
Logs
BED KNIFE

DISC CENTER
Case Study: Comparison table between design concepts

Before…with old design chipper

<table>
<thead>
<tr>
<th>Oversizes</th>
<th>Overthick</th>
<th>Accepts</th>
<th>Pins</th>
<th>Fines</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10%</td>
<td>6,80%</td>
<td>87,20%</td>
<td>4,50%</td>
<td>1,40%</td>
</tr>
</tbody>
</table>

OLD DESIGN

87.20%
Case Study: Comparison table between design concepts

Now...Using new concept chipper

<table>
<thead>
<tr>
<th>Oversizes</th>
<th>Overthick</th>
<th>Accepts</th>
<th>Pins</th>
<th>Fines</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10%</td>
<td>3,70%</td>
<td>92,90%</td>
<td>2,90%</td>
<td>0,40%</td>
</tr>
</tbody>
</table>

NEW CONCEPT 92,90%
Case Study: Comparison table between design concepts

Before…with old design chipper

<table>
<thead>
<tr>
<th>Oversizes</th>
<th>Overthick</th>
<th>Accepts</th>
<th>Pins</th>
<th>Fines</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10%</td>
<td>6,80%</td>
<td>87,20%</td>
<td>4,50%</td>
<td>1,40%</td>
</tr>
</tbody>
</table>

Now…Using new concept chipper

<table>
<thead>
<tr>
<th>Oversizes</th>
<th>Overthick</th>
<th>Accepts</th>
<th>Pins</th>
<th>Fines</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10%</td>
<td>3,70%</td>
<td>92,90%</td>
<td>2,90%</td>
<td>0,40%</td>
</tr>
</tbody>
</table>
Your demand! It’s our target!

High Quality Chips!
COMMITTED TO PERFORMANCE

DEMUTH

Woodhandling

www.demuth.com.br - demuth@demuth.com.br